Sistem bilangan adalah
kode atau simbol yang digunakan untuk menerangkan sejumlah hal secara detail. Sistem
bilangan adalah bahasa yang berisi satu set pesan simbul-simbul yang berupa
angka dengan batasan untuk operasi aritmatika penjumlahan, perkalian dan yang
lainnya. Pada sistem bilangan terdapat bilangan integer dan bilangan pecahan
dengan titik radix “.”.
(N) r = [ (bagian integer
. bagian pecahan) r)
Titik radix
2.1. Sistem Bilangan Biner
Sistem bilangan biner adalah suatu sistem atau cara menghitung bilangan
dengan hanya menggunakan dua simbol angka yaitu ‘0’ dan ‘1’, bilangan ini
sering disebut dengan sistem bilangan berbasis atau radix 2 .Sistem bilangan
biner digunakan untuk mempresentasikan alat yang mempunyai dua keadaan operasi
yang dapat dioperasikan dalam dua keadaan ekstrim. Contoh switch dalam keadaan
terbuka atau tertutup, lampu pijar dalam keadaan terang atau gelap, dioda dalam
keadaan menghantar atau tidak menghantar, transistor dalam keadaan cut off atau
saturasi, fotosel dalam keadaan terang atau gelap, thermostat dalam keadaan
terbuka atau tertutup, Pita magnetik dalam keadaan magnet atau demagnet.
2.2. Sistem Bilangan Desimal.
Sistem bilangan desimal adalah suatu sistem atau cara menghitung bilangan
dengan menggunakan sepuluh simbol angka yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,’7’,’8’
dan ‘9’ bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 10.
Sistem bilangan desimal kurang cocok digunakan untuk sistem digital karena
sangat sulit merancang pesawat elektronik yang dapat bekerja dengan 10 level
(tiap-tiap level menyatakan karakter desimal mulai 0 sampai 9)
Sistem
bilangan desimal adalah positional-value
system,dimana nilai dari suatu digit tergantung dari posisinya. Nilai yang terdapat pada kolom ketiga pada Tabel 2.1., yaitu A, disebut satuan, kolom kedua yaitu B
disebut puluhan, C disebut ratusan, dan seterusnya. Kolom A, B, C menunjukkan
kenaikan pada eksponen dengan basis 10 yaitu 100 = 1, 101
= 10, 102 = 100. Dengan cara yang sama, setiap kolom pada sistem bilangan biner yang berbasis 2, menunjukkan eksponen dengan basis 2, yaitu 20 = 1, 21 = 2, 22
= 4, dan seterusnya.
Tabel 2.1. Nilai Bilangan Desimal dan Biner
Kolom
desimal
|
Kolom
biner
|
||||
C
102
= 100
(ratusan)
|
B
101
= 10
(puluhan)
|
A
100
= 1
(satuan)
|
C
22
= 4
(empatan)
|
B
21
= 2
(duaan)
|
A
20
= 1
(satuan)
|
Setiap digit biner disebut bit; bit paling kanan
disebut least significant bit (LSB), dan bit paling kiri disebut most
significant bit (MSB).
Untuk membedakan bilangan pada sistem yang berbeda
digunakan subskrip. Sebagai contoh 910 menyatakan bilangan sembilan
pada sistem bilangan desimal, dan 011012 menunjukkan 01101 pada sistem bilangan biner.
Subskrip tersebut sering diabaikan jika sistem bilangan yang dipakai sudah
jelas.
2.3. Sistem Bilangan Oktal.
Sistem bilangan oktal adalah suatu sistem atau cara menghitung bilangan
dengan menggunakan delapan simbol angka
yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,dan ’7’ bilangan ini sering disebut dengan
sistem bilangan berbasis atau radix 8. Sistem bilangan oktal digunakan sebagai alternatif untuk menyederhanakan sistem
pengkodean biner. Karena 8 = 23, maka satu (1) digit oktal dapat
mewakili tiga (3) digit biner.
2.4. Sistem Bilangan Heksadesimal.
Sistem bilangan heksadesimal adalah suatu sistem atau cara menghitung
bilangan dengan menggunakan 16 simbol yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,
’A’,’B’, ’C’,’D’,’E’,
dan ‘F’ bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 16.
Identik dengan sistem bilangan oktal, sistem bilangan heksadesimal juga
digunakan untuk alternatif
penyederhanaan sistem pengkodean biner. Karena 16 = 24, maka satu
(1) digit heksadesimal dapat mewakili empat (4) digit biner.
Komentar
Posting Komentar